The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures
نویسندگان
چکیده
Background High temperature inhibits cell growth and ethanol fermentation of Saccharomyces cerevisiae. As a complex phenotype, thermotolerance usually involves synergistic actions of many genes, thereby being difficult to engineer. The overexpression of either endogenous or exogenous stress-related transcription factor genes in yeasts was found to be able to improve relevant stress tolerance of the hosts. Results To increase ethanol yield of high-temperature fermentation, we constructed a series of strains of S. cerevisiae by expressing 8 transcription factor genes from S. cerevisiae and 7 transcription factor genes from thermotolerant K. marxianus in S. cerevisiae. The results of growth curve measurements and spotting test show that KmHsf1 and KmMsn2 can enhance cell growth of S. cerevisiae at 40-42 °C. According to the results of batch fermentation at 43 °C with an initial glucose concentration of 104.8 g/l, the fermentation broths of KmHSF1 and KmMSN2-expressing strains could reach final ethanol concentrations of 27.2 ± 1.4 and 27.6 ± 1.2 g/l, respectively, while the control strain just produced 18.9 ± 0.3 g/l ethanol. Transcriptomic analysis found that the expression of KmHSF1 and KmMSN2 resulted in 55 (including 31 up-regulated and 24 down-regulated) and 50 (including 32 up-regulated and 18 down-regulated) genes with different expression levels, respectively (padj < 0.05). The results of transcriptomic analysis also reveal that KmHsf1 might increase ethanol production by regulating genes related to transporter activity to limit excessive ATP consumption and promote the uptake of glucose; while KmMsn2 might promote ethanol fermentation by regulating genes associated with glucose metabolic process and glycolysis/gluconeogenesis. In addition, KmMsn2 might also help to cope with high temperature by regulating genes associated with lipid metabolism to change the membrane fluidity. Conclusions The transcription factors KmHsf1 and KmMsn2 of thermotolerant K. marxianus can promote both cell growth and ethanol fermentation of S. cerevisiae at high temperatures. Different mechanisms of KmHsf1 and KmMsn2 in promoting high-temperature ethanol fermentation of S. cerevisiae were revealed by transcriptomic analysis.
منابع مشابه
High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042.
We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growt...
متن کاملOverexpression of a truncated form of the MSN2 gene enhances the initial rate of ethanol production in an industrial fuel-ethanol Saccharomyces cerevisiae strain
Background The yeast strain CAT-1 isolated from a Brazilian fuelethanol plant (Babrzadeh et al. 2009) is one of the most common strain used nowadays due to its very efficient fermentation capacity, especially at high sugar concentrations and under the stressful industrial conditions. Since the transcription factor genes MSN4, MSN2, YAP1 and HSF1 of tolerant yeast strains are highly expressed un...
متن کاملComparison of the gene expression patterns of alcohol dehydrogenase isozymes in the thermotolerant yeast Kluyveromyces marxianus and their physiological functions.
Four genes encoding alcohol dehydrogenase (Adh) isozymes in the thermotolerant yeast Kluyveromyces marxianus, a potent candidate for ethanol production at high temperatures, were investigated. Of these, KmADH3 and KmADH4 were cloned and sequenced, and their deduced amino acid sequences were compared with those of KmAdh1 and KmAdh2 and other Adhs of Kluyveromyces lactis and Saccharomyces cerevis...
متن کاملGenetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses
BACKGROUND High-temperature fermentation technology with thermotolerant microbes has been expected to reduce the cost of bioconversion of cellulosic biomass to fuels or chemicals. Thermotolerant Kluyveromyces marxianus possesses intrinsic abilities to ferment and assimilate a wide variety of substrates including xylose and to efficiently produce proteins. These capabilities have been found to e...
متن کاملCharacterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus
Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...
متن کامل